Compound (I) was synthesized by refluxing bicyclo[2.2.2]octa-2,5-diene-2,3-dicarbonitrile (III) (Weis, 1962) with pentacarbonyliron in di- n-butyl ether for $4-5 \mathrm{~h}$. After dilution with hexane the solution was poured off and evaporated under vacuum. Compound (I) was obtained by flash chromatography on silica gel 60 (solvent: cyclohexane-ethyl acetate $2: 1$) as orangeyellow prisms. ${ }^{1} \mathrm{H}$ NMR: $\delta=4.05(2 \mathrm{H}), 3.8(2 \mathrm{H}), 1.3(2 \mathrm{H})$, $1.65(2 \mathrm{H})$. $\mathrm{IR}\left(\mathrm{cm}^{-1}\right): 2200(s), 2050 / 2000(v s), 1370(w), 1340$ $(w), 860(m)$. MS (high resolution): $m / z(\%)=267.995,240.003$, $211.992,183.977,156.066,129.040,128.034,101.022,55.937$. Slow crystallization from methanol afforded single crystals of (I) (m.p. 440-442 K).

Compound (II) was synthesized by heating enneacarbonyl diiron with dimethyl bicyclo[2.2.2]octa-2,5-diene-2,3-dicarboxylate (IV) in toluene (Nametkine, Tyurine, Nekhaev, Ivanov \& Bayaouova, 1976). Single crystals of (II) were obtained by crystallization from methanol (m.p. 387 K).

Structure solution was carried out with MULTAN (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982) and refinement was performed with a full-matrix least-squares technique. The H atoms were located in difference maps and refined isotropically. Absorption correction was applied. All calculations were carried out with the SDP program package (Frenz, 1985).

We thank the Deutsche Forschungs Gemeinschaft and the Fonds der chemischen Industrie for financial support and Mrs U. Wiesinger for crystal preparation.

Lists of structure factors, anisotropic thermal parameters, H -atom coordinates, bond distances and angles involving H atoms and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55539 (54 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: SH1001]

References

Almenningen, A., Haaland, A. \& Wahl, K. (1969). Acta Chem. Scand. 23, 2245-2252.
Beagley, B., Cruickshank, D. W. J., Pinder, P. M., Robiette, A. G. \& Sheldrick, G. M. (1969). Acta Cryst. B25, 737-744.
Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
Irngartinger, H. \& Jahn, R. (1991). Croat. Chem. Acta, 64, 289-294.
Irngartinger, H., Jahn, R., Rodewald, H., Kiers, C. T. \& Schenk, H. (1986). Acta Cryst. C42, 847-849.

Irngartinger, H., Oeser, T., Jahn, R. \& Kallfass, D. (1992). Chem. Ber. 125, 2067-2073.
Johnson, C. K. (1971). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Nametkine, N. S., Tyurine, V. D., Nekhaev, A. I., Ivanov, V. I. \& Bayaouova, F. S. (1976). J. Organomet. Chem. 107, 377-391.
Watson, W. H., Nagl, A., Kashyap, R. P., Marchand, A. P. \& Dave, P. R. (1990). Acta Cryst. C46, 24-27.
Weis, C. D. (1962). J. Org. Chem. 28, 74-78.

Acta Cryst. (1993). C49, 381-383

Structure of $\left[\mathrm{Fe}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClNO}_{4}\right)(\mathrm{CO})_{3}\right]$

Ju-Chun Wang,* Chia-Hsing Sun
and Gin-Zong Yang
Department of Chemistry, Soochow University, Taipei, Taiwan

Frank R. Fronczek and Steven F. Watkins
Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA

(Received 14 April 1992; accepted 23 September 1992)

Abstract

Tricarbonyl[(5,6- η)-dimethyl 7-(p-chlorophenyl)-7-azabicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylateκN]iron $(0),\left[\mathrm{Fe}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClNO}_{4}\right)(\mathrm{CO})_{3}\right]$, was synthesized and structurally characterized. The $\mathrm{Fe}-\mathrm{CO}$ distances are 1.807 (3), 1.800 (3) and 1.741 (3) \AA. The $\mathrm{Fe}-\mathrm{N}$ distance is 2.064 (2) \AA. The Fe atom interacts with the unsubstituted olefinic bond. The two $\mathrm{Fe}-\mathrm{C}$ distances are 2.030 (3) and 2.028 (2) \AA. The C-C distances for substituted and unsubstituted double bonds are 1.341 (3) and 1.424 (3) \AA, respectively. Two H atoms attached to the coordinated double bond are 0.36 (4) \AA away from the least-squares plane of ClC 2 C 3 C 4 .

Comment

Transition-metal-promoted nitrene-extrusion reactions in 7-azanorbornadiene derivatives (ANB) are of importance in the synthesis of aromatic compounds (Sun \& Chow, 1988; Sun, Chow \& Liu, 1990). Several complexes of transition metals with ANB have been structurally characterized (Sun, Chow \& Liu, 1990; Wang, Sun, Chow \& Liu, 1991; Liu, Sun, Yang, Wen, Wu, Shih \& Lin, 1992). In this paper we report the crystal structure of $\left[\mathrm{Fe}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClNO}_{4}\right)(\mathrm{CO})_{3}\right]$ (I). Two CO groups, which are cis to each other and trans to the double bond, have $\mathrm{Fe}-\mathrm{CO}$ distances 1.807 (3) and 1.800 (3) \AA.

(I)
© 1993 International Union of Crystallography

The C02O02 group approximately trans to the N atom has a shorter $\mathrm{Fe}-\mathrm{CO}$ distance $[1.741$ (3) \AA § owing to the poor π-acceptor property of the N atom. The $\mathrm{Fe}-\mathrm{N}$ distance is 2.064 (2) \AA. The unsubstituted double bond interacts in a π fashion with the Fe atom. The two $\mathrm{Fe}-\mathrm{C}$ distances are 2.030 (3) and 2.028 (2) \AA. The C-C distance for the unsubstituted double bond, 1.424 (3) \AA, is significantly longer than the $\mathrm{C}-\mathrm{C}$ distance for the substituted double bond, 1.341 (3) \AA. Two H atoms attached to the coordinated double bond are 0.36 (4) \AA above the C1C2C3C4 least-squares plane and the Fe atom lies 1.900 (1) \AA below this same plane.

Fig. 1. ORTEP (Johnson, 1970) drawing of the title compound with 50% probability ellipsoids for non-H atoms and with an arbitrary size for H atoms.

Experimental

Crystal data
$\left[\mathrm{Fe}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClNO}_{4}\right)(\mathrm{CO})_{3}\right]$
$M_{r}=459.63$
Triclinic
$P \overline{1}$
$a=7.959$ (1) \AA
$b=11.488$ (4) \AA
$c=11.559$ (2) \AA
$\alpha=91.58(2)^{\circ}$
$\beta=101.69(1)^{\circ}$
$\gamma=91.62(2)^{\circ}$
$V=1033.3$ (4) \AA^{3}
$Z=2$
Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: empirical
$T_{\text {min }}=0.925, T_{\text {max }}=1.00$
4730 measured reflections
4730 independent reflections
2872 observed reflections
$[I \geq 3 \sigma(I)]$
$D_{x}=1.477 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25
reflections
$\theta=10-12^{\circ}$
$\mu=0.90 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Irregular fragment
$0.58 \times 0.50 \times 0.30 \mathrm{~mm}$
Dark red
$\theta_{\text {max }}=55^{\circ}$
$h=0 \rightarrow 10$
$k=-14 \rightarrow 14$
$l=-14 \rightarrow 14$
3 standard reflections (300, 030, 005)
frequency: 10000 s intensity variation: <4\%

Refinement

Refinement on F
Final $R=0.049$
$w R=0.056$
$S=2.649$
2872 reflections
310 parameters
$4 F_{o} /\left[\sigma^{2}(I)+\left(0.02 F_{o}^{2}\right)^{2}\right]$
$(\Delta / \sigma)_{\max }=0.06$
$\Delta \rho_{\max }=0.306 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.260 \mathrm{e} \AA^{-3}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic thermal parameters $\left(\AA^{2}\right)$
H atoms were refined with fixed $B_{\text {iso }}$ values. For other atoms $B_{\text {eq }}=$ $(4 / 3)\left[a^{2} B(1,1)+b^{2} B(2,2)+c^{2} B(3,3)+a b(\cos \gamma) B(1,2)+a c(\cos \beta) B(1,3)\right.$ $+b c(\cos \alpha) B(2,3)]$.

	x	y	z	$B_{\text {iso }} / B_{\text {eq }}$
Fe	0.34200 (6)	0.2353 (5)	0.07667 (4)	5.72 (1)
Cl	0.2806 (2)	-0.1079 (1)	-0.4865 (1)	10.69 (4)
001	0.7111 (4)	0.2204 (4)	0.0792 (3)	11.1 (1)
002	0.3960 (5)	0.3028 (4)	0.3243 (3)	11.8 (1)
003	0.2201 (5)	0.0006 (3)	0.1210 (3)	10.7 (1)
051	-0.2944 (3)	0.3494 (3)	-0.1775 (2)	6.84 (6)
052	-0.2117 (3)	0.3724 (2)	-0.3476 (2)	5.98 (6)
061	0.2668 (4)	0.5078 (3)	-0.3314 (3)	12.42 (9)
062	0.0288 (3)	0.5709 (2)	-0.2944 (2)	7.44 (7)
N	0.2353 (3)	0.2341 (2)	-0.1017 (2)	4.23 (5)
C1	0.2911 (4)	0.3602 (3)	-0.1152 (3)	4.64 (7)
C 01	0.5671 (5)	0.2248 (4)	0.0735 (3)	7.4 (1)
C2	0.2828 (4)	0.3947 (3)	0.0115 (3)	5.48 (8)
C02	0.3793 (5)	0.2745 (4)	0.2265 (4)	8.0 (1)
C3	0.1337 (4)	0.3351 (3)	0.0335 (3)	5.19 (8)
C03	0.2672 (5)	0.0909 (4)	0.1029 (3)	7.2 (1)
C4	0.0598 (3)	0.2656 (3)	-0.0806 (3)	4.42 (7)
C5	-0.0009 (3)	0.3465 (3)	-0.1806 (3)	4.20 (6)
C6	0.1379 (4)	0.4055 (3)	-0.2002 (3)	4.44 (7)
C11	0.2444 (4)	0.1515 (3)	-0.1958 (3)	4.61 (7)
C12	0.1001 (6)	0.0868 (4)	-0.2531 (4)	6.1 (1)
C13	0.1142 (6)	0.0058 (5)	-0.3416 (5)	7.0 (1)
C14	0.2667 (5)	-0.0077 (3)	-0.3725 (3)	6.8 (1)
C15	0.4098 (6)	0.0513 (4)	-0.3126 (4)	6.6 (1)
C16	0.3977 (6)	0.1304 (4)	-0.2244 (4)	5.9 (1)
C22	0.192 (2)	0.049 (1)	-0.192 (1)	7.2 (4)
C23	0.196 (2)	-0.033 (1)	-0.283 (1)	8.0 (5)
C25	0.325 (2)	0.111 (2)	-0.382 (1)	8.2 (4)
C26	0.316 (2)	0.189 (1)	-0.296 (1)	6.5 (4)
C51	-0.1844 (4)	0.3568 (3)	-0.2339 (3)	4.44 (7)
C52	-0.3867 (5)	0.3891 (4)	-0.4069 (3)	7.3 (1)
C61	0.1520 (4)	0.4988 (3)	-0.2818 (3)	5.57 (8)
C62	0.0252 (6)	0.6592 (4)	-0.3790 (4)	10.4 (1)
H1	0.399 (5)	0.369 (3)	-0.138 (3)	6.50
H2	0.330 (5)	0.467 (3)	0.048 (3)	6.50
H3	0.062 (5)	0.356 (3)	0.082 (3)	6.50
H4	-0.011 (5)	0.200 (3)	-0.073 (3)	6.50

Table 2. Geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$

$\mathrm{Fe}-\mathrm{N}$	2.064 (2)	$\mathrm{N}-\mathrm{Cl}$	1.524 (3)
$\mathrm{Fe}-\mathrm{C} 01$	1.807 (3)	$\mathrm{N}-\mathrm{C} 4$	1.518 (2)
$\mathrm{Fe}-\mathrm{C} 2$	2.030 (3)	$\mathrm{N}-\mathrm{Cl1}$	1.438 (3)
$\mathrm{Fe}-\mathrm{C} 02$	1.741 (3)	$\mathrm{C} 1-\mathrm{C} 2$	1.522 (3)
$\mathrm{Fe}-\mathrm{C} 3$	2.028 (2)	C1-C6	1.517 (3)
$\mathrm{Fe}-\mathrm{C0} 3$	1.800 (3)	$\mathrm{Cl}-\mathrm{H} 1$	0.95 (3)
$\mathrm{Cl}-\mathrm{Cl} 4$	1.747 (2)	C2-C3	1.424 (3)
O01-C01	1.138 (3)	C2-H2	0.95 (3)
O02-C02	1.147 (3)	C3-C4	1.525 (3)
O03-C03	1.132 (3)	C3-H3	0.91 (3)
051-C51	1.195 (2)	C4-C5	1.513 (3)
O52-C51	1.305 (2)	C4-H4	0.94 (3)
052-C52	1.443 (2)	C5-C6	1.341 (3)
O61-C61	1.175 (3)	C5-C51	1.476 (3)
O62--C61	1.289 (3)	C6-C61	1.464 (3)
O62-C62	1.426 (3)		

$\mathrm{N}-\mathrm{Fe}-\mathrm{C01}$	101.00 (9)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	122 (2)
$\mathrm{N}-\mathrm{Fe}-\mathrm{C} 2$	65.36 (8)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	125 (2)
$\mathrm{N}-\mathrm{Fe}-\mathrm{C} 02$	159.7 (1)	$\mathrm{Fe}-\mathrm{C} 02-\mathrm{O} 02$	176.6 (3)
$\mathrm{N}-\mathrm{Fe}-\mathrm{C} 3$	65.54 (7)	$\mathrm{Fe}-\mathrm{C} 3-\mathrm{C} 2$	69.5 (1)
$\mathrm{N}-\mathrm{Fe}-\mathrm{C0} 3$	96.6 (1)	$\mathrm{Fe}-\mathrm{C} 3-\mathrm{C} 4$	94.2 (1)
$\mathrm{C} 01-\mathrm{Fe}-\mathrm{C} 2$	103.6 (1)	$\mathrm{Fe}-\mathrm{C} 3-\mathrm{H} 3$	126 (2)
$\mathrm{C} 01-\mathrm{Fe}-\mathrm{C} 02$	94.2 (1)	C2-C3-C4	105.1 (2)
$\mathrm{C} 01-\mathrm{Fe}-\mathrm{C} 3$	144.6 (1)	C2-C3-H3	129 (2)
$\mathrm{C} 01-\mathrm{Fe}-\mathrm{C} 03$	106.3 (1)	C4-C3-H3	119 (2)
$\mathrm{C} 2-\mathrm{Fe}-\mathrm{C} 02$	98.1 (1)	$\mathrm{Fe}-\mathrm{C} 03-\mathrm{O} 03$	179.0 (3)
$\mathrm{C} 2-\mathrm{Fe}-\mathrm{C} 3$	41.10 (9)	$\mathrm{N}-\mathrm{C} 4-\mathrm{C} 3$	93.4 (1)
$\mathrm{C} 2-\mathrm{Fe}-\mathrm{C} 03$	147.6 (1)	$\mathrm{N}-\mathrm{C} 4-\mathrm{C} 5$	$101.9(1)$
$\mathrm{C} 02-\mathrm{Fe}-\mathrm{C} 3$	94.3(1)	$\mathrm{N}-\mathrm{C} 4-\mathrm{H} 4$	114 (2)
$\mathrm{C} 02-\mathrm{Fe}-\mathrm{C} 03$	92.0 (1)	C3-C4-H4	116 (2)
$\mathrm{C} 3-\mathrm{Fe}-\mathrm{C} 03$	107.7 (1)	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	118 (2)
C3-C4-C5	110.6 (2)	C4-C5-C6	107.2 (2)
$\mathrm{Fe}-\mathrm{N}-\mathrm{Cl}$	93.6 (1)	C4-C5-C51	122.1 (2)
$\mathrm{Fe}-\mathrm{N}-\mathrm{C} 4$	93.0 (1)	C6-C5-C51	130.5 (2)
$\mathrm{Fe}-\mathrm{N}-\mathrm{Cl1}$	131.3 (1)	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	106.6 (2)
$\mathrm{C} 1-\mathrm{N}-\mathrm{C} 4$	93.9 (1)	C1-C6-C61	123.1 (2)
$\mathrm{Cl}-\mathrm{N}-\mathrm{Cl1}$	117.9 (2)	C5-C6-C61	130.3 (2)
$\mathrm{C} 4-\mathrm{N}-\mathrm{Cl1}$	118.5 (1)	$\mathrm{N}-\mathrm{C} 1-\mathrm{H} 1$	114 (2)
$\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$	93.1 (2)	$\mathrm{C} 2-\mathrm{Cl}-\mathrm{H1}$	118 (2)
$\mathrm{N}-\mathrm{C} 1-\mathrm{C} 6$	102.5 (1)	C6-Cl-H1	116 (2)
C2-C1-C6	110.2 (2)	$\mathrm{Fe}-\mathrm{C} 2-\mathrm{C} 1$	95.0 (1)
$\mathrm{Fe}-\mathrm{C} 2-\mathrm{H} 2$	125 (2)	$\mathrm{Fe}-\mathrm{C} 01-\mathrm{O} 01$	175.4 (2)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	105.3 (2)	$\mathrm{Fe}-\mathrm{C} 2-\mathrm{C} 3$	69.4 (1)

The title compound was synthesized by reacting $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ with 7 -azanorbornadiene in thf under N_{2} overnight. During the reaction, three types of stable metal complex were isolated, i.e. $\left[\mathrm{Fe}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClNO}_{4}\right)(\mathrm{CO})_{4}\right]$ and two structural isomers of [$\left.\mathrm{Fe}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClNO}_{4}\right)(\mathrm{CO})_{3}\right]$ (Sun, Wang \& Yang, to be published). A similar reaction was observed during the study of other typical reactions of ANB derivatives with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ (Sun, Chow \& Lui, 1990). Dark-red crystals of $\left[\mathrm{Fe}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClNO}_{4}\right)(\mathrm{CO})_{3}\right]$ were grown from ethyl acetate/ n-hexane mixed solvent. The structure was solved by direct methods using Personal SDP (Frenz, 1989). H atoms on the fused ring were located on difference maps and refined as normal atoms with fixed isotropic displacement parameters. Other H atoms were placed at idealized positions and included in the structure-factor calculations but not in the least-squares calculations. Four out of six phenyl-ring C atoms are disordered. The site occupancy for one ring is fixed at 0.75 and for the other is fixed at 0.25 . The dihedral angle for these two rings is $54.8(4)^{\circ}$. Fig. 1 shows only the larger site occupancy for clarity. All calculations were carried out on an 80386-based IBM-compatible PC.

These studies are supported by the National Science Council (NSC81-0208-M031-03) of Taiwan.

[^0]
References

Frenz, B. A. (1989). Personal SDP - A Real-Time System for Solving, Refining and Displaying Crystal Structures. B. A. Frenz \& Associates, Inc., College Station, Texas, USA.
Johnson, C. K. (1970). ORTEP. Report ORNL-3794, second revision. Oak Ridge National Laboratory, Tennessee, USA.

Liu, L.-K., Sun, C.-H., Yang, G.-Z., Wen, Y.-S., Wu, C.-F., Shih, S.-Y. \& Lin, K.-S. (1992). Organometallics, 11, 972-976.

Sun, C.-H. \& Chow, T. J. (1988). J. Chem. Soc. Chem. Commun. pp. 535-536.
Sun, C.-H., Chow, T. J. \& Liu, L.-K. (1990). Organometallics, 9, 560-565.
Wang, J.-C., Sun, C.-H., Chow, T. J. \& Liu, L.-K. (1991). Acta Cryst. C47, 2459-2461.

Acta Cryst. (1993). C49, 383-385

mer-Trichlorotris(2,3-dihydrobenzo[b]thio-phene-S)rhodium(III)

Masood Parvez, James F. Fait, Peter D. Clark and Colin G. Jones

Department of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N $1 N 4$
(Received 21 April 1992; accepted 8 September 1992)

Abstract

The Rh atom has a distorted octahedral geometry. Two of the benzothiophenyl ligands occupy trans equatorial positions with $\mathrm{Rh}-\mathrm{S}$ distances [2.351 (1) and 2.369 (1) \AA] which are significantly longer than the third $[2.330$ (1) \AA] distance. The $\mathrm{Rh}-\mathrm{Cl}$ distances are in the range 2.333 (2)-2.359 (1) \AA. The benzothiophenyl ligand at the axial position is inclined at almost right angles [mean-planes angles 89.6 (2) and $\left.79.5(2)^{\circ}\right]$ to the other two ligands which lie almost parallel to each other [mean-planes angle $\left.10.4(2)^{\circ}\right]$.

Comment

Organosulfur compounds coordinated to transitionmetal species are of general interest as models for interactions which occur during the catalytic hydrodesulfurization of hydrocarbons (Dong, Duckett, Ohman \& Jones, 1992). Industrially, this process is carried out on a large scale to produce sulfur-free transportation fuels. The title compound (I) is an example of a complex which may model species formed during the hydrodesulfurization of benzo[b]thiophene. Partial hydrogenation of benzothiophene is known to produce the 2,3-dihydro derivative, a compound which should readily coordinate to metal species. The rhodium complex of $2,3-$ dihydrobenzo $[b]$ thiophene was prepared by heating

[^0]: Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete geometry have been deposited with the British Li brary Document Supply Centre as Supplementary Publication No. SUP 55556 (28 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: NA1009]

